

phone: 408.986.9838

email: sales@acphotonics.com website: www.acphotonics.com

# **4 Port PM Fiber Circulator**



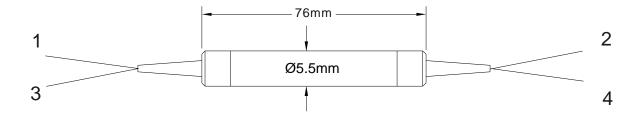
ACP's polarization maintaining optical circulator utilizes proprietary designs and metal bonding micro optics packaging. It provides low insertion loss, broad band high isolation, high extinction ratio, excellent temperature stability, and epoxy free optical paths. It can be used for wavelength add/drop, dispersion compensation, and EDFA applications.

All AC Photonics' products are Telcordia qualification tested.

#### **Key Features**

- Low Insertion Loss
- Wide Band, High Isolation
- High Extinction Ratio
- Compact In-line Package
- High Stability and Reliability
- Epoxy Free Optical Path

#### **Applications**


- Optical Amplifier
- Metro Area Network
- Wavelength Add/Drop
- Dispersion Compensation
- Bi-directional Communication

#### **Performance Specifications**

| Parameter                          |         | Specifications                           |  |  |
|------------------------------------|---------|------------------------------------------|--|--|
| Configuration                      |         | Port1 to 2, Port2 to 3, Port3 to 4       |  |  |
| Operating Wavelength               |         | 1525nm to 1565nm                         |  |  |
| Insertion Loss                     | Typical | ≤ 1.0dB                                  |  |  |
| Instituti Esse                     | Maximum | ≤ 1.3dB                                  |  |  |
| Channel Peak Isolation             |         | ≥ 40dB                                   |  |  |
| Channel Typical Isolation          |         | ≥ 30dB                                   |  |  |
| Channel Cross Talk                 |         | ≥ 50dB                                   |  |  |
| Extinction Ratio                   |         | ≥ 16                                     |  |  |
| Return Loss                        |         | ≥ 55dB                                   |  |  |
| Optical Power                      |         | ≤ 300mW                                  |  |  |
| Direction of incident polarization |         | Slow axis                                |  |  |
| Operating Temperature              |         | 0 to +70°C                               |  |  |
| Storage Temperature                |         | -40 to +85°C                             |  |  |
| Fiber Type                         |         | PM on port1 and 2, SMF-28 or PM on port3 |  |  |
| Package Dimensions                 |         | Ø5.5 x L76mm                             |  |  |

- NOTE: 1. The PM fiber and the connector key are aligned to the slow axis.
  - 2. ER value applies to fiber  $\leq$  0.75m. Increased fiber length will decrease ER.
  - 3. For each connector, IL will be 0.3dB higher, RL 5dB lower, and ER 2dB lower.

### **Mechanical Dimensions**



## **Ordering Information**

| PMOC |            |             |             |                  |              |                     |                       |
|------|------------|-------------|-------------|------------------|--------------|---------------------|-----------------------|
|      | Port       | Wavelength  | Grade       | Pigtail Style    | Fiber Length | In/Out<br>Connector | Working Axis          |
|      | 4 = 4 Port | 13 = 1310nm | P = P Grade | 1 = Bare Fiber   | 1 = 0.75m    | 0 = None            | S = Slow Axis Working |
|      |            | 15 = 1550nm |             | 2 = 900um Jacket | 2 = 1.0m     | 1 = FC/APC          | B = Both Axis Working |
|      |            |             |             | 3 = 3mm Cable    | 3 = 1.5m     | 2 = FC/PC           | F = Fast Axis Working |
|      |            |             |             |                  | S = Specify  | 3 = SC/APC          |                       |
|      |            |             |             |                  |              | 4 = SC/PC           |                       |
|      |            |             |             |                  |              | 5 = ST              |                       |
|      |            |             |             |                  |              | 6 = LC/UPC          |                       |
|      |            |             |             |                  |              | 7 = LC/APC          |                       |